If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+18m+28=0
a = 2; b = 18; c = +28;
Δ = b2-4ac
Δ = 182-4·2·28
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-10}{2*2}=\frac{-28}{4} =-7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+10}{2*2}=\frac{-8}{4} =-2 $
| 10w+120=10w+12045w+25=45w+25 | | 20x+50=10x+40 | | m∠2= | | 10=p*(4-2) | | 100=(2x+3)+51=180 | | 2x+5=-7+2x | | (2x)(2x)=19 | | Y-2-38=2x | | -4x–2=18* | | 8-3h+2=-2-6h | | 3x-13=9x+3 | | 5x+150+7x-30=180 | | 3k–5=31 | | 5j=6j+7 | | 6y-60=66 | | 1.6x+1.6=0.7x+3 | | 2x–5=6x+9 | | -8b-8=-2-10b | | 27=10x | | -8d=-10d-10 | | v−33=26 | | 3x=13,x | | 8s+10=-10+2s+8s | | 25+6t=43 | | 2.4|16.9+1.8=4.8|2.4+y | | x/9=-8,x | | 38+2x=7(5x-4) | | –9y=–7−10y | | 32 t=18 | | 10+22x=-3x-40 | | 2.4/16.9+1.8=4.8/2.4+y | | 2/5+y=22 |